Electromagnetic Waves Propagation Characteristics in Superconducting Photonic Crystals

نویسنده

  • Arafa H Aly
چکیده

Photonic crystals (PCs) are structures with periodically modulated dielectric constants whose distribution follows a periodicity of the order of a fraction of the optical wavelength. Since the first pioneering work in this field, many new interesting ideas have been developed dealing with one-dimensional (1D), two-dimensional (2D), and threedimensional (3D) PCs. Researchers have proposed many new and unique applications of photonic devices which may revolutionize the field of photonics in much the same way as semiconductors revolutionized electronics. They can generate spectral regions named photonic band gaps (PBGs) where light cannot propagate in a manner analogous to the formation of electronic band gaps in semiconductors [1,2]. There are several studies of metallic [3-7] and superconducting photonic crystals [7,8] which are mostly concentrated at microwave, millimeterwave, and far-infrared frequencies. In those frequencies, metals act like nearly perfect reflectors with no significant absorption problems. Yablonovitch [1] main motivation was to engineer the photonic density of states in order to control the spontaneous emission of materials embedded with photonic crystal while John’s idea was to use photonic crystals to affect the localization and control of light. However due to the difficulty of actually fabricating the structures at optical scales early studies were either theoretical or in the microwave regime where photonic crystals can be built on the far more reading accessible centimeter scale. This fact is due to the property of the electromagnetic fields known as scale invariance in essence, the electromagnetic fields as the solutions to Maxwell’s equations has no natural length scale and so solutions for centimeter scale structure at microwave frequencies as the same for nanometer scale structures at optical frequencies. The optical analogue of light is the photonic crystals in which atoms or molecules are replaced by macroscopic media with different dielectric constants and the periodic potential is replaced by a periodic dielectric function. if the dielectric constants of the materials is sufficiently different and also if the absorption of light by the material is minimal then the refractions and reflections of light from all various interfaces can produce many of the same phenomena for photons like that the atomic potential produced for electrons[9]. The previous details can guide us to the meaning of photonic crystals that can control the propagation of light since it can simply defined as a dielectric media with a periodic

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Calculating Propagation Modes of a One Dimensional Photonic Crystal (RESEARCH NOTE)

Photonic band-gap (PBG) crystals offer new dimensions of freedom in controlling propagation of electromagnetic waves. The existence of stop-bands in the transmission characteristic of these crystals makes them a suitable element for the realization of many useful microwave and optical subsystems. In this paper, we calculate the propagation constant of a one-dimensional (1-D) photonic crystal by...

متن کامل

Investigation and Comparison of Light Propagation in Two Graded Photonic Crystal Structures

In this paper, we study two different Graded Index (GRIN) photonic crystal (PC) structures which are named as structure type I and type II. The PC structures are made of the square rod in an air background. To design a GRIN PC structure the lattice constant has been altered in the direction transverse to propagation. We investigated focusing effect             and waveguiding behavior of electr...

متن کامل

Investigation of Photonic Band Gaps of One-Dimensional Heterostructure Magnetic Photonic Crystals

Multiple structures in one-dimensional photonic crystals have great potentials for ultrawide omnireflectors and tunable switches. In this paper, we study the propagation of electromagnetic waves in a one-dimensional heterostructure magnetic photonic crystal for both TE and TM incidence polarizations by means of the transfer matrix method. Results show that by stacking two magnetic photonic crys...

متن کامل

Photonic band-gap structures

The analogy between electromagnetic wave propagation in multidimensionally periodic structures and electronwave propagation in real crystals has proven to be a fruitful one. Initial efforts were motivated by the prospect of a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden irrespective of the propagation direction in sp...

متن کامل

Scattering Forces within a Left-Handed Photonic Crystal

Electromagnetic waves are known to exert optical forces on particles through radiation pressure. It was hypothesized previously that electromagnetic waves inside left-handed metamaterials produce negative radiation pressure. Here we numerically examine optical forces inside left-handed photonic crystals demonstrating negative refraction and reversed phase propagation. We demonstrate that even t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012